実習3.モード解析(チャンネル導波路) SOI技術によるSi細線導波路のモード 解析とシングルモード導波路の設計

Noah Consulting Limited

シリコンで培われた微細加工技術を光集積回路に活用するSi細線導波路を 例題として取り上げ説明する。

文献 (K. Yamada et al., Optics Lett., vol. 28, pp.1663-1664, Sept. 2003)

図D3-1. シリコン細線導波路の半分の形状 ²

図D3-2. シミュレーションでの波長設定

4

図D3-3. Y方向のメッシュ設定

図D3-6. シミュレーション結果得られた等価屈折率

7

シングルモード導波路の設計

シングルモード条件は、導波路幅Wによって実現する。 Wの幅を0.8μmから開始して狭くして、「高次(1次)モードが 立たなくなる」条件でシングルモード条件とする。

図D3-8. W=0.8µm定義の構造

図D3-8は対称性を利用して半分の領域を解析している。 1次モードは半対称[赤丸]となる最初のモード[青丸])である。 "Run"(図D3-9の赤四角)をクリックして計算を実行した。

🖉 Waveguide Solver Setting 📃 🗖 🔀								
General Information FD Mode Solver Setting								
General Setting Advanced Setting								
Polarization								
CX CY	• 🕅	🔲 Pol	larization Co	upling				
Mode Solver Type								
Real Complex	œ	Direct	C Iterativ	e				
Mode Symmetry								
Number of Mode: 1	\mathcal{V}	Symmetric (Anti-Sy 	ymmetric				
Perfectly Matched Layer Boundary Condition (PML) Setting								
	<u>R</u> un	<u>C</u> lo	ose	<i>.</i> ♦ Melp				

図D3-10.X偏波とY偏波に対する等価屈折率の値を重ねて表示した画面

ファイル格納方法

前頁のファイル保存アイコンをクリックすると、図D3-11が出現する。ファイル はデフォルトの「テキスト」のままとして、赤丸をクリックして、File Nameを定 義する。図D3-12が開くので、ファイル格納場所(赤丸)とファイル名、青丸を 指定し、保存(赤四角)をクリックする。

図D3-11.ファイル出力を定義する画面

図D3-12.ファイル名入力画面

その結果、図D3-11の画面は、図D3-13となる。 図D3-13に示すように、一部文字化けのように見えるが、気にしないで、OK(赤 丸)をクリックする。その結果、図D3-12で指定した場所に、指定したファイル名 がテキストファイルでできている。これを、メモ帳またはワードパッドで開くと、図 D3-14のようになる。

	Plot Cop	y / Save		▶ ₩08.txt - メモ帳			
	Action	Save To File		ファイル(E) 編集(E) 書式(Q) 表示(V) ヘルプ(H) Wavelength(um) EffectiveIndex(Real) EffectiveIndex(Real)			
	Type File Name	As Text File C:\Documents and Settin		(X_1.550_Model) (Y_1.550_Model) 1.55000 1.491198338 2.161704726			
		ltems ✓ Main ✓ Horizontal	File layout • Table layout		✓✓		
Vertical 3D Matrix layout VERTICAL C Matrix layout Matrix layout Matrix layout			C Matrix layout	図D3-14.テキストファイルの内容			
			ancel 🧇 <u>H</u> elp				

図D3-13.ファイル名が定義された図D3-11の画面

チャンネル幅を変化させて、X偏波とY偏波の等価屈折率を同様な作業 で求めて、それらの値をグラフソフトで表示すると、図D3-15の結果が得 られる。

図D3-15.計算の結果得られた等価屈折率のチャンネル幅依存性

図D3-15から等価屈折率がクラッドの屈折率より高ければ高次モードが立って いることを意味しているので、Y偏波(TEモード)とX偏波(TMモード)のシングル 条件を満たす領域を図のように決定することができる。図D3-16~18はY偏波 でチャンネル幅が0.55, 0.50, 0.45 µ mに対するフィールド分布である。これら のフィールド分布と図D3-15の結果が矛盾無く対応していることがわかる。

図D3-16. チャンネル幅0.55 µmでの1次モードのフィールド分布

図D3-17. チャンネル幅0.50 µmでの1次モードのフィールド分布

図D3-18. チャンネル幅0.45µmでの1次モードのフィールド分布 (物理的に意味の無い解)

これらの結果、論文の著者Yamadaらが採用している400nm×200nm はTE/TMモードのシングル条件を満足していることがわかる。なお、 APSSにはスキャン機能があるので、チャンネル幅(W)をパラメータ定 義し、一連の計算を自動的に行なうことも可能である(Scanモード)。