回路解析

実習9.ラティス フィルタの設計

SOI技術によるSi細線導波路

実習8で準備してきたことを用いて、回路解析の実習を行う。 Sパラメータ解析されたデバイスを「コネクタ」で接続する手法 についても体験していただく。

Noah Consulting Limited

APSS起動後、File New Project Circuitを選択すると図1のウイザードが開始される。

図1で回路プロジェクト名を定義する。ここでは、C_LFilter(赤四角)とする。 Description欄はメモとして用いることができる。プロジェクト名を入力した後、 Next(赤丸)をクリックする。

ircuit - Create	e Circuit Project		
	Create Circuit Project		
F	Name		
	C_LFilter		
L	Description		
	Please input your description.		
1 and the second			
III)			
APPAPAT			
	🖣 Back 🔵 Next 🕨 🛛 Finish 🛷 Help 🗙	Cancel	
·			

図1. ラティス フィルタ解析のための回路プロジェクト作成ウイザード 2

図2の画面では解析しようとする回路に含まれているデバイスとターミナルを定義 する。この例でのラティスフィルタは8段のカップラからなるので、デバイス解析を行 なったカップラプロジェクトを選択し(マウスで選択され黒くなっている)、矢印(赤丸) を8回クリックする。クリックする度に、右側のウインドウにデバイスが追加される。

図2では8個のデバイ スが追加された状態 である。また、ターミナ ルは入力2つ、出力2 つで合計4個であるの で、Number of terminalsを4(青四 角)とセットする。回路 のサイズは後ほど変 更が可能なのでここ ではデフォルトのまま とする。以上の設定が 終わったら、Finish (青丸)をクリックして ウイザードを終了する。

図2.回路を構成するデバイスプロジェクトの選択 3

図2でFinishをクリックしてウイザードが終了すると図3の画面となる。 図3ではとりあえず、回路を構成する部品を画面に置いただけの段階である。 User Definedタブ(赤丸)をクリックして、ユーザ定義を行なう。その様子を図4に 記す。

図3.回路解析のためのデバイスとターミナルが用意された段階

ユーザ定義の変数を用いて、4つのターミナルと8つのカップラを配置する。

左上に第一のターミナル(赤丸)を仮に配置した様子を図5に記す。残りのターミ ナルを仮配置し、カップラは最終的な場所に配置する。

🗠 APSS [APSS 2.3] - TRIA

🕵 File Edit View Window System Help 第一のカップラは(Z-Min,Y-Min) = D • 😓 🔲 済 ↔ 0 ← 済 谷 計 🖻 👗 🖻 👝 💼 🗌 🖉 🗝 마 무 놈 💋 👎 🔍 🗨 🎇 (5,2) [単位 µ m]、第二のカップラ Projects 🗟 Projects **___** 🛅 🗘 🐂 C_LFilter は(Z-Min,Y-Min) = (15,2)として、 🚊 🛟 🙀 Circuit 0.00 🗄 🛟 🛁 D LFilter 1 図6では第五のカップラ(Z-Min,Y-🗄 🛟 🔫 🛛 D_LFilter 2 0.00 🗄 🛟 🔫 – D_LFilter 3 🗄 🛟 🛁 🛛 D_LFilter 4 ŧ Min) = (45,2)を配置している様子 🗄 🛟 🛁 🛛 D_LFilter 5 > 🗄 🛟 🛁 🛛 D_LFilter 6 🗄 🛟 🔫 – D_LFilter 7 を示す。 🗄 🛟 🔫 D_LFilter 8 🛟 🚟 💹 LFilter 1 26.40-🗄 🛟 🖬 🛛 Terminal . 💼 ... 😩 📖 . Terminal 2 🕂 🛟 🔲 🛛 Terminal 3 🗄 🛟 🔲 🛛 Teminal 4 52.80 -Y 52.36 Z 42.42 Object Circuit Geometry

Terminal 1

Auto Refresh Refresh Name Expression Comment --- 🖌 OK --- 🗸 OK Z-Min 3.0000 2.5000 Y-Min 1 Z-Width 2.0000 --- 🗸 OK --- 🧹 OK Y-Width w 🗔 Size 🜍 Global 5 図5.第一ターミナルの仮配置

_ 8 ×

132.20

66.10

図6.第五カップラの配置

4つのターミナルの仮配置と8つのカップラの最終配置を行ない、全ての回路要素を記述できる範囲で表示したものが図7である。

図7ではカップラにターミナルを接続し、カップラ間の接続も行なう。

図7.回路プロジェクト作成途中の表示(カップラを配置した段階)

7

接続するには接続するもの同士の2つの部品を選択しなければならない。ここでは、 まず、第一ターミナルを選択する。マウスで図7の赤丸か赤四角をクリックする。

すると、図7や8に示されているよう にその部品が選択されたことがわか る印がつく。その状態で、マウスを右 クリックすると、図8に示すようなウイ ンドウが現れる。このウインドウは Terminal 1(赤四角)からSet Connection[接続](赤四角)をしてい ることを示している。 Set Connectionを選択すると、マウ スが指のシンボルとなり、それで第 ーカップラまでドラッグ アンドドロッ プする。その結果、図9に示す。

図8.第一ターミナルと第一カップラの接続過程(1)

黒い線が第一カップラまで引かれる(赤丸)。ここで、この黒い線の開始点は気にせず、 最終点が第一カップラとなることに注意されたい。なぜなら、接続元はすでに明確に設 定されており、接続先を定義する行為であるからである。

図9.第一ターミナルと第一カップラの接続過程(2)

図10では2つの部品、第一ターミナル(青四角)と第一カップラ(赤四角)の接続を示している。第一ターミナルのシンボル(青丸)をクリックすると、図11が開く。

図10.第一ターミナルと第一カップラの接続過程(3)

図11では、第一ターミナルには2つの端子があり、その2つともまだ接続されていないことを示している。図9から今接続しようとしているのは第一ター ミナルのPort 2を第一カップラと接続しようとしているので、図11でPort 2(青丸)をクリックする。

図11.第一ターミナルのシンボルレイアウト

すると、図12の第一ターミナルの選択端子にPort 2が設定される(青点線丸)。同 様に、第一カップラのシンボル(赤四角)をクリックして、シンボルレイアウト(赤点 線の四角)を開く。ここで、Port 1(赤丸)を選択すると、中央画面の赤点線丸のテ キストに選択ポートが登録される。

次に、接続方法は2つある。図12よりも図10が見易いのでこちらをご 覧いただきたい。左側のメニューはコネクタを使っての接続、右側のメ ニューは直接の接続である。図12の接続では直接接続を選択する (茶色四角)。選択されると、そのボタンが押し込まれている状態となる。 また、今回の直接接続では、第一カップラの位置を固定して、第一 ターミナルを移動して接続するので、茶色丸の接続を選択する。これ らの設定が終わるとOKをクリックする。 同様にして、第一カップラと第二カップラを接続する様子を図13に記す。 図13では第一カップラのPort 2(青丸)と第二カップラのPort 1(赤丸)を直線コ ネックタ(赤四角)で接続する選択を示してある。

第一カップラの Port 1は既に黄 色表示され、接 続済み(先の図 12で接続した)を 示している。 接続記述を終え、 OKをクリックす ると図14が開く。

今回の計算では精度を得るために全てのコネックタは数値解析(赤丸)とした。同様に8段の直線接続を終え、図15はS字(円弧)コネックタ接続である。 このような曲がり導波路はCBPM(シリンドリカルBPM)で数値解析し、離散 化に伴う誤差の混入を極力抑制してある。図16に参考までにCBPMの計算 制御パネルを示す。

図15.S字コネックタでの接続

図15で残りのコネックタやターミナルを接続して回路を完成させる。完成した状態を 図17に記す。 Cylindric BPM Solver Parameters Setting

Cylindric BPM Solver Parameters Setting			
BPM Parameters Algorithm Parameters	PML Boundary Condition Number of Layers at		
Scheme Factor: 0.5	× Minimum Boundary	8	A.
Wide Angle Pade Order: 2	× Maximum Boundary	8	<u>ک</u>
-3D Solver Type	Y Minimum Boundary	8	÷
Iterative C ADI	YMaximum Boundary	8	÷
Relative Tolerance	Z Minimum Boundary	8	<u>×</u>
Maximum Iteration	Z Maximum Boundary	8	E F
Bi-Direction BPM Iteration	Field View Sample Rate		
Max Number of Trips: 2	X Direction	1	
Relative Tolerance (dB): 50	Y Direction	1	<u>×</u>
······	Z Direction	1	×.
Computation parameters			•1
Computation Window (um): 5	Number of Y Meshes:	125	<u>-</u>
Propagation Step Size (um): 1	Number of X Meshes:	0	* *
		<u>C</u> lose	<i>.</i>

図16.S字コネックタをCBPM解析する際の制御パネル

さて、計算を実行するにはRun Simulation(赤丸)をクリックする。すると、図18 が出現するので、Y偏波(赤四角)を選択して、Run(赤丸)をクリックする。

図17.全ての部品を接続して完成した回路

17

実際の計算に際しては、図19の保存確認画面でOKと返事を戻す。 各デバイスはSパラメータを読み出して計算し、コネックタは数値解析を行な い、全体の特性を計算する。計算途中にはプログレッシブバーが表示され (図20)全体の計算進捗を知ることができる。

図20.プログレッシブ バー表示

図21のメッセージ画面で計算が正常に終了したことを知ることができる。 OKをクリックすると、図22となる。

図21.計算が正常に終了したときのメッセージ画面

View Simulation Results(赤丸)がEnableとなる。

図21でView Simulation Resultsをクリックすると図22の結果が得られる。

図22.正常に回路解析が終了したときの画面

上記の回路解析ではカップラのみを基本デバイスとしたのに対して、半円のコ ネックタも基本デバイスとしてラティスフィルタプロジェクトを作成することができ る。その構成例を図23に記す。

21

基本デバイス点数は増加するが半円のコネクタ特性の計算を改善することができ、全体として計算時間の短縮を図ることができる。

図24.半円コネクタも基本デバイスとしたときの回路構成